In the context of robotic actuators, the term torque density refers to how much torque the actuator is able to produce per unit weight or unit volume. The term can be applied to the actuator as a whole or separately to the motor or gearbox that is contained within the actuator. Why should we be interested in torque density? Because the torque densities of a robot’s components can limit nearly every facet of a robot’s performance.
torque density
Motus Labs Announces Availability of the ML1000 Series of M-DRIVES for the Robot and Automation Industries
DALLAS, TX – September 1, 2020 – Motus Labs, a designer and manufacturer of mechanical motion control solutions for the industrial, service, and collaborative robot and automation markets, today announced commercial availability of the Motus Labs ML1000 series of M-DRIVES. The disruptive drive architecture uses mating blocks or surfaces instead of traditional gear teeth resulting in a more rigid drive at a lower weight with up to twice the torque density and 15% greater efficiencies compared to competitive strain wave drives. These performance benefits provide a lower overall solution cost, increased precision, reach, speed, and longer life – significantly improving the ROI for robot end-users.
Technical Paper | Impact of Actuator Torque Density on Expected Robot Life – A Dynamic Model
Recent technical paper contributed by Greg Zancewicz & Carlos Hoefken at the 5th International Conference on Control and Robotics Engineering. The paper discusses electric actuators adding weight along an articulated robot arm and how the torque and speed limitations impose additional dynamic constraints including useful life of a robot and the extent to which each actuator operates at or near its torque ratings.
Torque Density Consequences for Robot Arm Design
Torque density is the ratio of the rated torque of a transmission to its weight. Torque density is an especially critical parameter in robot arm design since the weight of the robot arm actuators become part of a distributed load that needs to be moved and positioned along with the primary robot payload.